The influence of the foaming agent on the mechanical properties of the PM hydroxyapatite-based biocomposites processed by two-step sintering route

O. GINGU^{a*}, D. COJOCARU^b, C. RISTOSCU^c, G. SIMA^a, C. TEISANU^a, M. MANGRA^a

^aUniversity of Craiova, Faculty of Mechanics, 107 Calea Bucuresti, 2200512, Craiova, Romania,

^bUniversity Politehnica of Bucharest, 313 Splaiul Independentei, 060042, Bucharest, Romania

^cLaser Department, National Institute for Laser, Plasma and Radiation Physics, PO Box MG-36, RO-77125, Magurele, Ilfov, Romania

Abstract

As bone tissue engineering applications, the studied biocomposites are processed by the powder metallurgy (PM) route. The powder mixture is made of hydroxyapatite submicronic powders (< 200 nm) respectively micronic (30-50 μ m) as matrix and TiH₂ (100-150 μ m; 15-20 % mass.) as reinforcement's precursor as well as blowing agent. To increase the porosity by the space holder technique, CaCO₃ powder is added (5-10 % mass.). The homogenization step is performed in Pulverisette 6 ball mill (n = 200 rpm, time = 30 min.) followed by the cold compaction at 150 MPa. The green compacts are submitted to the two-steps sintering (TSS) route. Both foaming reactions developed in a manner specific to this composite system: the hydride dehydrogenation lead to TiO₂ (rutile) synthesis respectively the CaO was not synthesized along the CaCO₃ decomposition, and Ca₃(PO4)₂ was formed . The compression tests of the researched biocomposites proved widened spectrum of mechanical behavior, from fragile to ductile, depending on the foaming agents content and decomposition reactions along the TSS technology.